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Note 

BERKELEY: An “Open Ended” Configuration Interaction (Cl) 

Program Designed for Minicomputers* 

INTRODUCTION 

During the past 3 years we have been experimenting with the use of a high perfor- 
mance minicomputer for relatively large scale theoretical studies of molecular 
electronic structure [l, 21. These studies have demonstrated that such minicomputers 
can be very competitive with traditional large machines for a variety of scientific 
applications. Specifically, we have found the Harris Corporation Slash Four mini 
to be a factor of ~27 slower than the CDC 7600. However the cost of 1 h of CDC 7600 
time (including associated input/output charges) is at least $1000, while the Harris 
machine costs us only about $8/hr [I, 21. Thus we find that in the most straight- 
forward applications, e.g., the use of the self-consistent-field (SCF) programs 
POLYATOM [3] and GAUSSIAN 70 [4], the mini is at least a factor of three less 
expensive to use than the traditional large machine. 

A lingering doubt concerning the use of minicomputers centers about the ability 
(or lack of same) to approach the most challenging problem in electronic structure 
theory-the correlation problem [5]. In a limited sense, this challenge has recently 
been met by Dykstra’s development [6] of the method of self-consistent electron pairs 
(SCEP) on the Harris machine. The shortcoming of the SCEP method, while being 
both elegant and efficient, is that it is currently limited, much like the powerful Roos 
method [7], to singly and doubly substituted configurations relative to a single closed- 
shell reference configuration. And it is certainly well established [8] that there are 
numerous important chemical problems, the solution of which requires general 
configuration interaction (CI) methods. Thus it seems clear that a major challenge to 
any minicomputer concerns that machine’s adaptability to general, large scale 
CI techniques. 

THE BERKELEY CI PROGRAM 

Although the computational details of general CI methods can be formidable, 
it is generally agreed [S] that the procedure involves several relatively independent 
steps. We employ four such steps in the BERKELEY system. 
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A. Integral Transformation 

The transformation from integrals (ab j cd) over basis functions to integrals (ij 1 kl) 
over molecular orbitals has been the subject of several important papers [8-131. 
The first critical innovation was the replacement of the straightforward NE summation 
(N is the number of basis functions) by four quarter transformations, yielding an 
N5 procedure. The second breakthrough was made more recently by Yoshimine [l l] 
and allows the straightforward use of very large basis sets. By utilizing very elegant 
direct access sorting techniques, Yoshimine has shown that only N2 partially trans- 
formed integrals need be held in central memory at any given time. Thus with a 
machine the size of the Harris Slash Four, having -20,000 words of memory available 
for floating point arrays, the full four index transformation of 140 basis functions is 
possible. 

The use of the Yoshimine algorithms can sometimes be avoided for systems of high 
symmetry by carefully blocking [8] integrals by symmetry type (e.g., the (ala1 / b,b,) 
block). And in fact we have made extensive use of such blocking techniques in our 
earlier CI programs [14]. Nevertheless, we have now concluded that the Yoshimine 
approach is mandatory for even moderate-sized molecular systems (e.g., potential 
energy surfaces) with little or no spatial symmetry. Therefore, it was decided to ignore 
the blocking structure in this first version of the BERKELEY programs. 

The above decision turned out to be a blessing in disguise since it led to an important 
finding. In test computations on the C(CN), molecule (dicyanocarbene) using 50 basis 
functions, the first all FORTRAN version of the four index transformation required 
300 min. Comparison with published computation times [l 1, 131 suggests that this 
timing is representative of a carefully designed program. However, it was clear to us 
that due to the C,, symmetry of C(CN), , a vast number of multiplications by zero 
were being carried out. One of us (RRL) then reorganized the structure of the quarter 
transformation, with primary emphasis on the rapid identification of zero integrals 
(or quarter transformed integrals). Upon identification of a zero integral, all multi- 
plications [50 in the case of the C(CN), problem described above] of that integral are 
immediately bypassed. 

For the 50 basis function C(CN), problem the transformation time is thus reduced 
to 86 min. It should be noted that of this time, 63 min is primarily devoted to floating 
point multiplication and 23 min to the Yoshimine sorting procedure. Thus we suspect 
that our final time of 86 min (roughly 3 min of 7600 time) is not much more than would 
be required for the comparable fully blocked, completely in-core transformation. 

B. Formula Tape Generation 

In our research on potential energy surfaces and hypersurfaces [15], it has proved 
advantageous to divide the computation of Hamiltonian matrix elements Hi3 into a 
two step procedure [8]. This approach is very effective if a large number of CI calcu- 
lations are to be carried out using the same set of configurations [16]. In the first step, 
a “formula tape” is prepared which specifies the precise makeup of each nonzero Hij 
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as a linear combination of one- and two-electron integrals. This step need be carried 
out only once for a given molecular system. Hence, if one uses the same formula tape 
to compute 500 points on a potential surface, the cost per surface point of the formula 
tape becomes negligible. 

In this first version of the BERKELEY program the CI is carried out in terms of 
Slater determinants, rather than configurations (symmetry-adapted [5, 81 linear 
combinations of determinants). The obvious disadvantage of this approach is that it 
increases the size of the matrix H to be diagonalized. However, as we shall see, the 
time required for the extraction of the lowest eigenvalue and corresponding eigen- 
function is not great in any case. Furthermore, the restriction to Slater determinants 
allows us to focus exclusively on the most demanding part of the problem, the 
manipulation of numbers of integrals and formulas much too large to be stored in 
central memory. 

Following previous work by the Boys-Shavitt school [S, 171, each Slater deter- 
minant is stored in four 24-bit words, i.e., a total of 96 bits. This allows each of 96 spin 
orbitals to be occupied (bit turned on) or unoccupied (bit turned off). This means that 
only 48 molecular orbitals may be directly involved in the CI. However, this 48 need 
not include core orbitals, which are doubly occupied in all Slater determinants, or 
high lying virtual orbitals neglected in the CI procedure. Thus we do not at present 
anticipate that the restriction to 48 participating molecular orbitals will be a problem. 
In addition, the present version of BERKELEY requires that all Slater determinants 
reside in central memory during the formula tape step. Thus we are limited to ~10,000 
determinants. However, relatively minor changes could be made to eliminate the latter 
restriction. 

There are essentially four types of matrix elements & to be considered, namely, 
those involving pairs of Slater determinants differing by 0, 1, 2, or more than two 
spin orbitals. The bit representation of Slater determinants is particularly effective 
in determining which of the four cases a particular matrix element belongs to. 
However, it should be noted that the Harris Slash Four is not as well designed in this 
regard as the CDC 6400,6600, and 7600, which have explicit bit-counting instructions. 
On the Harris machine the comparison is carried out by a series of logical XOR 
statements, each of which compares two 24 bit words. The bit counting is carried out 
using masking, followed by table look-up. 

As an example of the division of labor in the above procedure consider a 32 basis 
function calculation of singlet methylene, involving 2981 Slater determinants. The 
determination of which of the four Hii types the 4,44$671 elements belong to 
requires 676 sec. The further generation of formulas for differences of 0, 1, and 2 spin 
orbitals requires 23, 99, and 600 set, respectively. 

The above procedure yields Hii formulas ordered with i and j in lower triangle or 
canonical form, but two-electron integrals (ij / kl) in arbitrary places. However, the 
reverse situation is preferable for the next step, the actual construction of numerical 
values of the Hij . Therefore at this stage, Yoshimine’s sorting algorithm [18] is used 
to reorder the formulas with integrals (ij ] kl) in canonical form and Hii in arbitrary 
order. For the CH, case described above [1,008,896 Hi, - (ij 1 kl) pairs], 340 set of 
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Slash Four time (all times reported here are elapsed times) are required. It is hoped 
that these detailed timing breakdowns will be of value to future investigators. 

C. Construction of Hamiltonian Matrix Elements 

In this step the symbolic formula tape is used to obtain numerical values of the Hi, . 
This step determines the size of problem which can be handled on the minicomputer, 
since external storage demands are greatest here. That is, three long lists-the 
two-electron integrals, the Hij formulas, and the Hij values-are simultaneously 
processed in the construction stage. In addition a large scratch area is required to 
implement Yoshimine’s algorithm [18]. 

Each nonzero two-electron integral is stored as a numerical value (48 bits; no labels 
are required since integrals are used in canonical order) for a total of 6 bytes. Each Hi3 
formula requires an (ij I kl) label, an Hij label, and a code representing the coefficient 
of the (ij I kl) in the Hij . All three of these pieces of information are packed into 
two 24-bit words (6 bytes). The actual HdI values require two integers (each 24 bits 
long) plus the 48-bit floating point number, for a total of 12 bytes. Finally a pointer 
array is used to relate a set of ij codes to the actual integer values of i andj. 

Our current external storage devices include [l] a 56,000,000 byte (or 56 MB, 
where MB designates megabytes) random access disk drive and a standard 9 track tape 
drive, with a capacity of slightly more than 20 MB. The disk, of course, must also 
hold the Slash Four operating system. The limitations of this system can be best 
illustrated by an example, a 42 basis function, 5359 determinant calculation on 
singlet methylene. At the construction stage there are 124,130 two-electron integrals 
(this is the number greater in magnitude than 5 x 1O-g hartrees), formulas requiring 
2,679,488 48 bit words, 1,652,436 nonzero (by symmetry) Hij values, and the same 
number of 48-bit words for the pointer array. These require a total of 47 MB of 
peripheral storage. In addition the scratch area required 23 MB, leaving only 6 MB 
for the system. Accordingly this scale of computation is about the limit of our current 
system. 

Since the construction involves several long lists, it also is carried out using 
Yoshimine’s direct access sorting techniques [18]. Specifically a block of ordered 
integrals is read into central memory and used to make contributions to all the Hij 
values in which those integrals appear. We have found that 68 ‘A of the time required 
for the construction step in the 5359 determinant CH2 problem (42 basis functions) 
is devoted to sorting, while the remaining 32 y0 of the computation time would be 
required using a machine with infinitely large central memory. The total computation 
time for this step is 28 min. 

A definite weakness of our present minicomputer system is that the final Hij values 
are spooled onto the tape drive in the construction stage. This means that in order to 
proceed to the diagonalization step, one must first transfer the Hij from tape to disk, 
a much faster input/output device. Since in many cases (e.g., the 5359 determinant 
CH, problem) the tape is nearly full, it must be read in its entirety. With our 37-in./sec 
(ips) drive this can require as much as 15 min, time during which the machine is 
essentially unused. Fortunately this situation will soon be relieved by our acquisition 
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of a surplus second 56,000,000-byte disk drive. This will completely eliminate the 
above cited 15 min, as the Hii values will be stored directly on the new disk. In addition 
it should allow us to handle problems of size 10,000 Slater determinants quite 
readily. 

D. Evaluation of Eigenvalues and Eigenvectors 

Certainly one of the important recent computational developments in molecular 
quantum mechanics has been the discovery of very efficient algorithms for the 
evaluation of the lowest eigenvalue(s) and corresponding eigenvector(s) of very large 
sparse matrices [19-221. In fact, we have found that, even using Slater determinants 
rather than configurations, the evaluation of the lowest eigenvalue is not a bottleneck 
in the overall CI procedure. 

For the BERKELEY system we have programmed two different iterative methods 
for the eigenvalue problem. The first of these, the method of optimal relaxation (MOR) 
developed by Shavitt et al. [21] appears fastest for cases where only the lowest eigen- 
value (and corresponding eigenvector) is required. In most cases we find that conver- 
gence to 1O-8 hartree in the total energy is achieved in six iterations, using the SCF 
reference determinant as the initial guess. It is worth noting that the read time for the 
H matrix is greatly reduced if an integral number of rows is contained on each record. 
This is done most efficiently if the records are of variable lengths. 

The second method adopted appears more suitable (especially as regards conver- 
gence properties) to higher eigenvalues. This is the Compromise Method recently 
introduced by Davidson [22] and programmed for the BERKELEY system by BRB. 
Davidson’s method is quite general and as implemented in the BERKELEY system 
will extract an arbitrary number of desired eigenvalues and eigenvectors. When only 
the lowest is required, about nine iterations are necessary for an accuracy of 1O-8 
hartrees in E. In the discussion that follows we give timing information for both 
methods. 

SOME TEST CASES 

Although the BERKELEY system is still in a relatively preliminary stage of 
development, timings achieved to date are sufficiently encouraging to be reported here. 
In the cases cited below, CI has been carried out including all singly and doubly 
substituted Slater determinants relative to a single reference determinant. This is done 
only for convenience and we wish to emphasize that our programs are completely 
general as regards the type of determinants allowed in the CI. 

Tables I and II summarize a number of representative test cases. We emphasize 
from the outset, of course, that precise comparisons with other methods are never 
possible since the relative speeds of different computers vary from one program to the 
next. Nevertheless the times for the first two water calculations may be compared 
with those reported by Hosteny et al. (HGDPS) [23]. The latter computations were 
carried out on the CDC 6400 machine, which is perhaps 1.5 times [l] faster (in 
cpu time) than our minicomputer. 
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HGDPS report 23 set of 6400 time for the integral transformation, and it seems 
clear that the present program (14 set) is faster for this particular H,O case. However, 
their formula tape requires only 23 set, compared to the present 75. For the actual 
construction of the H matrix both codes require 17 set, implying that the BERKELEY 
system is somewhat more efficient, given the speed advantage of the CDC 6400. 
HGDPS report only 5 set to evaluate the lowest eigenvalue and eigenvector, and this 
would appear a much better result than the 15 set reported in Table II. Such is not the 
case, however, since the matrix treated by HGDPS is only of size 224 x 224, since it 
is constructed from pure lA1 configurations. As noted in Table I our eigenvalue time 
refers to the 523 x 523 matrix in terms of simple Slater determinants. Although the 
use of Slater determinants rather than configurations slows down this last step 
somewhat, the eigenvalue time is still comparable to the transformation and con- 
struction times and does not significantly affect our total computation time. Hence 
the use of Slater determinants is at least partially justified. 

For the second test case in Tables I and II HGDPS report 51 set for the formula 
tape, 36 set for Hii construction, and 11 set for their order 361 eigenvalue problem. 
It seems fair to conclude that the BERKELEY system is at least as efficient as the 
program of HGDPS except for the formula tape step. The latter finding is of course 
not surprising since HGDPS have made effective use of the CDC 6400 bit-counting 
instruction. 

Direct comparison with previous work is not possible for calculations 3-8. 
However, calculation three was considered especially important since it reproduces 
(to 1 x 1O-6 hartrees in the total energy) the recent result of Rosenberg and 
Shavitt [24]. It can hardly be overemphasized that there are many possible sources 
of error in a system of programs as complicated as BERKELEY. In this regard it 
should be noted that we have also reproduced a number of results obtained by 
Dykstra [6] on singlet methylene using his SCEP method. Since CI and SCEP are 
radically different approaches to the correlation problem, this agreement cannot be 
considered fortuitous. 

Note added in proof. The capabilities of the BERKELEY system have been greatly enhanced 
during the past year. By working in terms of configurations, rather than Slater determinants, fully 
variational calculations including 15,006 configurations (42,456 determinants) have been completed 
on the Harris minicomputer. 
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